Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37368659

ABSTRACT

Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased risk for endometrial adenocarcinomas or hyperplasia, breast cancer, and oxidative damage, although the underlying mechanisms remain unclear. Previous studies have monitored cellular processes through levels of transcripts associated with Phase I Xenobiotic Metabolism (Cyp6g1 and Cyp6a2), oxidative stress (hsp60 and hsp70), apoptosis (hid, grim, and reaper), and DNA damage genes (Dmp53). In this study, we evaluated the survival and genotoxicity of ZEN, as well as its effects on emergence rate and fecundity in Drosophila melanogaster. Additionally, we determined levels of reactive oxygen species (ROS) using the D. melanogaster flare and Oregon R(R)-flare strains, which differ in levels of Cyp450 gene expression. Our results showed that ZEN toxicity did not increase mortality by more than 30%. We tested three ZEN concentrations (100, 200, and 400 µM) and found that none of the concentrations were genotoxic but were cytotoxic. Taking into account that it has previously been demonstrated that ZEN administration increased hsp60 expression levels and apoptosis gene transcripts in both strains, the data agree with an increase in ROS and development and fecundity alterations. Since Drosophila lacks homologous genes for mammalian estrogen receptors alpha and beta, the effects of this mycotoxin can be explained by a mechanism different from estrogenic activity.


Subject(s)
Zearalenone , Animals , Zearalenone/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , DNA Damage , Fertility , Mammals/metabolism
2.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373426

ABSTRACT

One of the largest health problems worldwide is the development of chronic noncommunicable diseases due to the consumption of hypercaloric diets. Among the most common alterations are cardiovascular diseases, and a high correlation between overnutrition and neurodegenerative diseases has also been found. The urgency in the study of specific damage to tissues such as the brain and intestine led us to use Drosophila melanogaster to study the metabolic effects caused by the consumption of fructose and palmitic acid in specific tissues. Thus, third instar larvae (96 ± 4 h) of the wild Canton-S strain of D. melanogaster were used to perform transcriptomic profiling in brain and midgut tissues to test for the potential metabolic effects of a diet supplemented with fructose and palmitic acid. Our data infer that this diet can alter the biosynthesis of proteins at the mRNA level that participate in the synthesis of amino acids, as well as fundamental enzymes for the dopaminergic and GABAergic systems in the midgut and brain. These also demonstrated alterations in the tissues of flies that may help explain the development of various reported human diseases associated with the consumption of fructose and palmitic acid in humans. These studies will not only help to better understand the mechanisms by which the consumption of these alimentary products is related to the development of neuronal diseases but may also contribute to the prevention of these conditions.


Subject(s)
Drosophila melanogaster , Neurodegenerative Diseases , Animals , Humans , Drosophila melanogaster/metabolism , Fructose/metabolism , Palmitic Acid/pharmacology , Larva/metabolism , Neurodegenerative Diseases/genetics , Gene Expression
3.
Front Immunol ; 13: 946770, 2022.
Article in English | MEDLINE | ID: mdl-36052060

ABSTRACT

The current pandemic generated by SARS-CoV-2 has led to mass vaccination with different biologics that have shown wide variations among human populations according to the origin and formulation of the vaccine. Studies evaluating the response in individuals with a natural infection before vaccination have been limited to antibody titer analysis and evaluating a few humoral and cellular response markers, showing a more rapid and intense humoral response than individuals without prior infection. However, the basis of these differences has not been explored in depth. In the present work, we analyzed a group of pro and anti-inflammatory cytokines, antibody titers, and cell populations in peripheral blood of individuals with previous SARS-CoV-2 infection using BNT162b2 biologic. Our results suggest that higher antibody concentration in individuals with an earlier disease could be generated by higher production of plasma cells to the detriment of the presence of memory B cells in the bloodstream, which could be related to the high baseline expression of cytokines (IL-6 and IL-10) before vaccination.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , Humans , Interleukin-10 , Interleukin-6 , Receptors, CCR7 , SARS-CoV-2 , Vaccination
4.
Toxicol Res (Camb) ; 10(4): 817-823, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34484673

ABSTRACT

All aerobic organisms are susceptible to damage by reactive oxygen species (ROS). ROS-induced damage has been associated with aging and diseases such as metabolic syndrome and cancer. However, not all organisms develop these diseases, nor do they age at the same rate; this is partially due to resistance to oxidative stress, a quantitative trait attributable to the interaction of factors including genetics and environmental. Drosophila melanogaster represents an ideal system to study how genetic variation can affect resistance to oxidative stress. In this work, oxidative stress (total and mitochondrial ROS), antioxidant response, and Cap 'n' collar isoform C and Spineless gene expression, one pesticide resistant (Oregon R(R)-flare) and wild-type (Canton-S) strains of D. melanogaster, were analyzed to test resistance to basal oxidative stress. ROS, catalase, and superoxide dismutase were determined by flow cytometry, and Cap 'n' collar isoform C and Spineless expression by qRT-PCR. The intensity of oxidative stress due to the pro-oxidant zearalenone in both was evaluated by flow cytometry. Data confirm expected differences in oxidative stress between strains that differ in Cyp450s levels. The Oregon (R)R-flare showed greater ROS, total and mitochondrial, compared to Canton-S. Regarding oxidative stress genes expression Cap 'n' collar isoform C and Spineless (Ss), Oregon R(R)-flare strain showed higher expression. In terms of response to zearalenone mycotoxin, Canton-S showed higher ROS concentration. Our data show variation in the resistance to oxidative stress among these strains of D. melanogaster.

5.
Tumour Biol ; 39(10): 1010428317732181, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28992762

ABSTRACT

Acute myeloid leukemia is characterized by its high biological and clinical heterogeneity, which represents an important barrier for a precise disease classification and accurate therapy. While epigenetic aberrations play a pivotal role in acute myeloid leukemia pathophysiology, molecular signatures such as change in the DNA methylation patterns and genetic mutations in enzymes needed to the methylation process can also be helpful for classifying acute myeloid leukemia. Our study aims to unveil the relevance of DNMT3A and TET2 genes in global and specific methylation patterns in acute myeloid leukemia. Peripheral blood samples from 110 untreated patients with acute myeloid leukemia and 15 healthy control individuals were collected. Global 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from peripheral blood leukocytes were measured by using the MethylFlashTM Quantification kits. DNMT3A and TET2 expression levels were evaluated by real-time quantitative polymerase chain reaction. The R882A hotspot of DNMT3A and exons 6-10 of TET2 were amplified by polymerase chain reaction and sequenced using the Sanger method. Methylation patterns of 16 gene promoters were evaluated by pyrosequencing after treating DNA with sodium bisulfite, and their transcriptional products were measured by real-time quantitative polymerase chain reaction.Here, we demonstrate altered levels of 5-methylcytosine and 5-hydroxymethylcytosine and highly variable transcript levels of DNMT3A and TET2 in peripheral blood leukocytes from acute myeloid leukemia patients. We found a mutation prevalence of 2.7% for DNMT3A and 11.8% for TET2 in the Mexican population with this disease. The average overall survival of acute myeloid leukemia patients with DNMT3A mutations was only 4 months. In addition, we showed that mutations in DNMT3A and TET2 may cause irregular DNA methylation patterns and transcriptional expression levels in 16 genes known to be involved in acute myeloid leukemia pathogenesis. Our findings suggest that alterations in DNMT3A and TET2 may be associated with acute myeloid leukemia prognosis. Furthermore, alterations in these enzymes affect normal methylation patterns in acute myeloid leukemia- specific genes, which in turn, may influence patient survival.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins/genetics , DNA Methyltransferase 3A , DNA Mutational Analysis , Dioxygenases , Female , Humans , Male , Middle Aged , Mutation , Real-Time Polymerase Chain Reaction
6.
Tumour Biol ; 39(4): 1010428317695932, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28381192

ABSTRACT

As of 2012, liver cancer was the second leading cause of death worldwide, and hepatocellular carcinoma is the most common primary cancer of the liver. The identification of molecules that might be molecular markers or therapeutic targets is urgently needed to improve clinical management. Based on a microarray analysis performed in our laboratory, we selected six genes-namely, ANXA2, DYNLT1, PFKP, PLA2G7, KRT19, and SNX10-as candidates for validation as tumor markers of liver cancer in a rat model. Their patterns of overexpression in preneoplastic lesions and established tumors at 10 different time points between 24 h and 18 months were analyzed to identify putative tumor markers for further studies. We validated the microarray results by quantitative reverse transcription polymerase chain reaction, which revealed high transcriptional expression for five of the genes, consistent with their high protein expression during cancer progression reported in the literature. However, studies of the association of sorting nexin 10 with different types of cancer are limited, prompting further study. The characterization of sorting nexin 10 in preneoplastic lesions and established tumors revealed messenger RNA overexpression and a simultaneous decrease in sorting nexin 10 protein expression. A group of microRNAs related to sorting nexin 10 messenger RNA were selected based on a data analysis conducted using miRDB and microrna.org . An analysis of the expression of these microRNAs revealed an increase in the transcription of microRNA-30d whenever the sorting nexin 10 protein was downregulated. These results suggest that sorting nexin 10 is a potential liver cancer marker exhibiting characteristics of a putative suppressor protein that is likely regulated by microRNA-30d.


Subject(s)
Liver Neoplasms, Experimental/metabolism , MicroRNAs/genetics , Sorting Nexins/genetics , Animals , Autophagy-Related Protein 5/genetics , Biomarkers, Tumor/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms, Experimental/pathology , Male , MicroRNAs/analysis , Rats , Rats, Inbred F344 , Sorting Nexins/analysis , Sorting Nexins/physiology
7.
Chem Biol Interact ; 238: 170-9, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26148435

ABSTRACT

Cellular response to arsenic is strongly dependent on p53 functional status. Primarily arresting the cell cycle in G1 or G2/M phases, arsenic treatment also induces an increase in the S-phase time in wild-type p53 cells. In contrast, cells with a non-functional p53 display only a subtle increase in the S phase, indicating arsenic differentially affects the cell cycle depending on p53 status. Importantly, it has been reported that arsenic induces reactive oxygen species (ROS), a process counteracted by p53. To evaluate the participation of p53 in the lengthening of the S phase and the connection between the transient cell cycle arrest and oxidative stress, we evaluated the cell response to arsenic in MCF-7 and H1299 cells, and analyzed p53's role as a transcription factor in regulating genes involved in ROS reduction and S phase transition. Herein, we discovered that arsenic induced an increase in the population of S phase cells that was dependent on the presence and transcriptional activity of p53. Furthermore, for the first time, we demonstrate that arsenic activates p53-dependent transcription of ROS detoxification genes, such as SESN1, and by an indirect mechanism involving ATF3, genes that could be responsible for the S phase cell cycle arrest, such as CDC25A.


Subject(s)
Arsenites/toxicity , Reactive Oxygen Species/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , Sodium Compounds/toxicity , Tumor Suppressor Protein p53/metabolism , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Cell Line, Tumor , Down-Regulation/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , MCF-7 Cells , Promoter Regions, Genetic , Protein Binding , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/genetics
8.
Mol Biol Rep ; 41(4): 1993-2004, 2014.
Article in English | MEDLINE | ID: mdl-24420854

ABSTRACT

The target cells for the transforming mutations caused by high-risk human papillomavirus (HPV) infection could be the stem cells of the uterine cervical epithelium, generating particular cancer stem cells (CSCs). The aim of this study was to identify and characterize the CSCs from cervical-cancer-derived cell lines. The ability of SiHa, CaLo, and C-33A cell lines to efflux Hoechst 33342 was evaluated by flow cytometry and cells from the corresponding side populations (SPs) and nonside populations (NSPs) were analyzed for their cell-cycle status (pyronin Y) and their mRNA levels of ABC transporter family members (with qPCR). Specific markers (α6-integrin(bri)/CD71(dim), CK17) of normal epithelial stem cells were evaluated by flow cytometry. The biological properties of these cells were analyzed, including their colony heterogeneity, repopulation, and anchorage-independent colony formation. We identified SPs (around 3 %) in the SiHa and CaLo cell lines, more than 70 % of which were in G0 phase and strongly expressed ABC transporters (predominantly ABCG2 and ABCB1). The SP from CaLo cells showed an α6-integrin(bri)/CD(dim) pattern, whereas the SP from the SiHa cells showed an α6-integrin(-)/CD(dim) pattern. Recultured cells from the SPs of both cell lines generated both SPs and NSPs, and had higher clonogenic potential to form mainly holoclones and greater colony-forming efficiency under anchorage-independent growth conditions than the cells from the NSPs or total cell populations. Interestingly, we identified no SP in the HPV-uninfected C-33A cell line, and it did not express ABCG2 or other members of the ABC transporters (ABCB1, ABCC1, or ABCA3).


Subject(s)
Neoplastic Stem Cells/metabolism , Side-Population Cells/metabolism , Uterine Cervical Neoplasms/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Antigens, Surface , Biomarkers , Cell Cycle , Cell Line, Tumor , Female , Flow Cytometry , Gene Expression , Humans , Tumor Stem Cell Assay , Uterine Cervical Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...